3.163 \(\int \cot ^3(c+d x) (a+a \sec (c+d x))^{5/2} \, dx\)

Optimal. Leaf size=106 \[ -\frac {2 a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{d}+\frac {3 a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {2} d}+\frac {a^2 \sqrt {a \sec (c+d x)+a}}{d (1-\sec (c+d x))} \]

[Out]

-2*a^(5/2)*arctanh((a+a*sec(d*x+c))^(1/2)/a^(1/2))/d+3/2*a^(5/2)*arctanh(1/2*(a+a*sec(d*x+c))^(1/2)*2^(1/2)/a^
(1/2))*2^(1/2)/d+a^2*(a+a*sec(d*x+c))^(1/2)/d/(1-sec(d*x+c))

________________________________________________________________________________________

Rubi [A]  time = 0.10, antiderivative size = 106, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 5, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.217, Rules used = {3880, 99, 156, 63, 207} \[ \frac {a^2 \sqrt {a \sec (c+d x)+a}}{d (1-\sec (c+d x))}-\frac {2 a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {a}}\right )}{d}+\frac {3 a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a \sec (c+d x)+a}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {2} d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^3*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(-2*a^(5/2)*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/Sqrt[a]])/d + (3*a^(5/2)*ArcTanh[Sqrt[a + a*Sec[c + d*x]]/(Sqrt[2
]*Sqrt[a])])/(Sqrt[2]*d) + (a^2*Sqrt[a + a*Sec[c + d*x]])/(d*(1 - Sec[c + d*x]))

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 99

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[((a + b
*x)^(m + 1)*(c + d*x)^n*(e + f*x)^(p + 1))/((m + 1)*(b*e - a*f)), x] - Dist[1/((m + 1)*(b*e - a*f)), Int[(a +
b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + p + 2)*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 207

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTanh[(Rt[b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> -Dist[(d*b^(m - 1)
)^(-1), Subst[Int[((-a + b*x)^((m - 1)/2)*(a + b*x)^((m - 1)/2 + n))/x, x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[n]

Rubi steps

\begin {align*} \int \cot ^3(c+d x) (a+a \sec (c+d x))^{5/2} \, dx &=\frac {a^4 \operatorname {Subst}\left (\int \frac {\sqrt {a+a x}}{x (-a+a x)^2} \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac {a^2 \sqrt {a+a \sec (c+d x)}}{d (1-\sec (c+d x))}+\frac {a^3 \operatorname {Subst}\left (\int \frac {-a-\frac {a x}{2}}{x (-a+a x) \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{d}\\ &=\frac {a^2 \sqrt {a+a \sec (c+d x)}}{d (1-\sec (c+d x))}+\frac {a^3 \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{d}-\frac {\left (3 a^4\right ) \operatorname {Subst}\left (\int \frac {1}{(-a+a x) \sqrt {a+a x}} \, dx,x,\sec (c+d x)\right )}{2 d}\\ &=\frac {a^2 \sqrt {a+a \sec (c+d x)}}{d (1-\sec (c+d x))}+\frac {\left (2 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{-1+\frac {x^2}{a}} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{d}-\frac {\left (3 a^3\right ) \operatorname {Subst}\left (\int \frac {1}{-2 a+x^2} \, dx,x,\sqrt {a+a \sec (c+d x)}\right )}{d}\\ &=-\frac {2 a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {a}}\right )}{d}+\frac {3 a^{5/2} \tanh ^{-1}\left (\frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {2} d}+\frac {a^2 \sqrt {a+a \sec (c+d x)}}{d (1-\sec (c+d x))}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.29, size = 115, normalized size = 1.08 \[ -\frac {(a (\sec (c+d x)+1))^{5/2} \left (2 \sqrt {\sec (c+d x)+1}+4 (\sec (c+d x)-1) \tanh ^{-1}\left (\sqrt {\sec (c+d x)+1}\right )-3 \sqrt {2} (\sec (c+d x)-1) \tanh ^{-1}\left (\frac {\sqrt {\sec (c+d x)+1}}{\sqrt {2}}\right )\right )}{2 d (\sec (c+d x)-1) (\sec (c+d x)+1)^{5/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]^3*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

-1/2*((a*(1 + Sec[c + d*x]))^(5/2)*(4*ArcTanh[Sqrt[1 + Sec[c + d*x]]]*(-1 + Sec[c + d*x]) - 3*Sqrt[2]*ArcTanh[
Sqrt[1 + Sec[c + d*x]]/Sqrt[2]]*(-1 + Sec[c + d*x]) + 2*Sqrt[1 + Sec[c + d*x]]))/(d*(-1 + Sec[c + d*x])*(1 + S
ec[c + d*x])^(5/2))

________________________________________________________________________________________

fricas [B]  time = 0.76, size = 398, normalized size = 3.75 \[ \left [\frac {4 \, a^{2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) + 4 \, {\left (a^{2} \cos \left (d x + c\right ) - a^{2}\right )} \sqrt {a} \log \left (-2 \, a \cos \left (d x + c\right ) + 2 \, \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) - a\right ) + 3 \, {\left (\sqrt {2} a^{2} \cos \left (d x + c\right ) - \sqrt {2} a^{2}\right )} \sqrt {a} \log \left (\frac {2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right ) - 1}\right )}{4 \, {\left (d \cos \left (d x + c\right ) - d\right )}}, \frac {2 \, a^{2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) - 3 \, {\left (\sqrt {2} a^{2} \cos \left (d x + c\right ) - \sqrt {2} a^{2}\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{a \cos \left (d x + c\right ) + a}\right ) + 4 \, {\left (a^{2} \cos \left (d x + c\right ) - a^{2}\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{a \cos \left (d x + c\right ) + a}\right )}{2 \, {\left (d \cos \left (d x + c\right ) - d\right )}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

[1/4*(4*a^2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c) + 4*(a^2*cos(d*x + c) - a^2)*sqrt(a)*log(-2*a
*cos(d*x + c) + 2*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c) - a) + 3*(sqrt(2)*a^2*cos(d*x +
 c) - sqrt(2)*a^2)*sqrt(a)*log((2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c) + 3*a*c
os(d*x + c) + a)/(cos(d*x + c) - 1)))/(d*cos(d*x + c) - d), 1/2*(2*a^2*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))
*cos(d*x + c) - 3*(sqrt(2)*a^2*cos(d*x + c) - sqrt(2)*a^2)*sqrt(-a)*arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x +
c) + a)/cos(d*x + c))*cos(d*x + c)/(a*cos(d*x + c) + a)) + 4*(a^2*cos(d*x + c) - a^2)*sqrt(-a)*arctan(sqrt(-a)
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(a*cos(d*x + c) + a)))/(d*cos(d*x + c) - d)]

________________________________________________________________________________________

giac [A]  time = 6.34, size = 140, normalized size = 1.32 \[ -\frac {\frac {3 \, \sqrt {2} a^{3} \arctan \left (\frac {\sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{\sqrt {-a}}\right ) \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{\sqrt {-a}} - \frac {4 \, a^{3} \arctan \left (\frac {\sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}}{2 \, \sqrt {-a}}\right ) \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{\sqrt {-a}} + \frac {\sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}{\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2}}}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

-1/2*(3*sqrt(2)*a^3*arctan(sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))*sgn(cos(d*x + c))/sqrt(-a) - 4*a^3*ar
ctan(1/2*sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)/sqrt(-a))*sgn(cos(d*x + c))/sqrt(-a) + sqrt(2)*sqrt(-a*ta
n(1/2*d*x + 1/2*c)^2 + a)*a^2*sgn(cos(d*x + c))/tan(1/2*d*x + 1/2*c)^2)/d

________________________________________________________________________________________

maple [B]  time = 1.13, size = 248, normalized size = 2.34 \[ \frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (2 \cos \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right )+3 \cos \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )-2 \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sqrt {2}}{2}\right ) \sqrt {2}-3 \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arctan \left (\frac {1}{\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right )+2 \cos \left (d x +c \right )\right ) a^{2}}{2 d \left (-1+\cos \left (d x +c \right )\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^3*(a+a*sec(d*x+c))^(5/2),x)

[Out]

1/2/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(2*cos(d*x+c)*2^(1/2)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/
2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))+3*cos(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/(-2
*cos(d*x+c)/(1+cos(d*x+c)))^(1/2))-2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(-2*cos(d*x+c)/(1+cos(d*x
+c)))^(1/2)*2^(1/2))*2^(1/2)-3*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1
/2))+2*cos(d*x+c))/(-1+cos(d*x+c))*a^2

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cot \left (d x + c\right )^{3}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^3*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)^(5/2)*cot(d*x + c)^3, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\mathrm {cot}\left (c+d\,x\right )}^3\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(c + d*x)^3*(a + a/cos(c + d*x))^(5/2),x)

[Out]

int(cot(c + d*x)^3*(a + a/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**3*(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________